1 Expand $(2 x+5)(x-1)(x+3)$, simplifying your answer.

2 Find the discriminant of $3 x^{2}+5 x+2$. Hence state the number of distinct real roots of the equation $3 x^{2}+5 x+2=0$.

3 Make x the subject of the formula $y=\frac{1-2 x}{x+3}$.

4 Factorise $n^{3}+3 n^{2}+2 n$. Hence prove that, when n is a positive integer, $n^{3}+3 n^{2}+2 n$ is always divisible by 6 .

5 Express $5 x^{2}+20 x+6$ in the form $a(x+b)^{2}+c$.

6 Rearrange the formula $c=\sqrt{\frac{a+b}{2}}$ to make a the subject.

7 Make a the subject of the formula $s=u t+\frac{1}{2} a t^{2}$.

8 Prove that, when n is an integer, $n^{3}-n$ is always even.

9 (i) Express $x^{2}+6 x+5$ in the form $(x+a)^{2}+b$.
(ii) Write down the coordinates of the minimum point on the graph of $y=x^{2}+6 x+5$.

10 Find the real roots of the equation $x^{4}-5 x^{2}-36=0$ by considering it as a quadratic equation in x^{2}.

11 Solve the equation $\frac{3 x+1}{2 x}=4$.

12 Find the range of values of k for which the equation $2 x^{2}+k x+18=0$ does not have real roots.

13 Rearrange $y+5=x(y+2)$ to make y the subject of the formula.

